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Abstract—Recent advancements in text-to-3D generation have
relied on large 3D datasets or expensive optimization processes
during inference. In this paper, we introduce ControlFace, a
novel framework designed for the creation of computer graphics-
friendly 3D faces under the guidance of text and images. We
utilize a controllable diffusion model to generate physically-
based facial assets in texture space. The key to achieving
few-shot generation lies in 3D-aware controls: a texture-space
facial representation of geometry proxy. The main distinguishing
feature of our framework is the effective integration of 3D facial
priors with the diversity inherited from text-to-image diffusion
models through few-shot learning, requiring only 36 3D faces for
training. Once trained, ControlFace can generate diverse 3D faces
in a feed-forward manner within 5 seconds and perform editing
and stylization without 3D labeled data. We have demonstrated
the effectiveness of our method in generating and editing various
digital characters, guided by multi-modal controls.

Index Terms—Generative Model, 3D Avatar, Physically-based
Facial Assets

I. INTRODUCTION

Creating high-quality 3D digital humans is a challenging
problem in computer graphics and computer vision. Tradi-
tional reconstruction-based methods either rely on expensive
specialized hardware [1] or restricted parametric face models
[2] to reconstruct the 3D face of real-world humans. Recent
advancements in vision-language models [3], [4] have led to
progress in text-to-3D generation [5], [6]. Current 3D face gen-
eration approaches can be classified into two main categories:
classic inference-based methods and optimization-based meth-
ods. Classic inference-based methods utilize feed-forward
generative models trained on 3D facial datasets to generate
3D faces with different representations, such as triangle mesh
and Neural Radiance Fields (NeRF) [7]. Optimization-based
methods incorporate 2D vision-language models to increase
diversity and employ inference-time optimization techniques,
typically based on CLIP [8], [9] or Score Distillation Sampling
(SDS) [10], to generate 3D facial assets.

The main challenge in 3D face generation arises from the
contradiction between the desired diversity and the limited
amount of 3D facial data. A typical 3D facial dataset used in
classic inference-based methods is not only costly to obtain,
but also significantly smaller than the amount of training data
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Fig. 1. ControlFace is capable of synthesizing various PBR textures with
micro-structure-level skin details, which are compatible with existing CG
pipelines. The hair, eyeballs, and jewelry are manually chosen.

for general vision-language models (VLMs). Therefore, the
diversity of these methods is limited. Current optimization-
based methods address this challenge through inference-time
optimization, which is time-consuming and often suffers from
artifacts such as oversaturation, over-smoothing, and diversity
collapse. Consequently, the effective integration of 2D VLMs
into 3D generation remains a challenge. To address these
challenges, we introduce ControlFace, a novel controllable
generative framework for high-quality and diverse 3D face
generations guided by input prompts as shown in Fig. 1. Our
key motivation is: there is a similarity between images and
textures of faces, and we could restore this relationship thereby
introducing geometry into diffusion models. To achieve this,
we introduce a 3D-aware control module and use texture-space
semantic maps as our 3D-aware control signals to ”control”
the pre-trained diffusion model. This approach offers several
advantages: 1) Few-shot learning: the number of trainable
parameters in our control module is much smaller than that
of the diffusion model, making it possible to train the control
module with a compact dataset; 2) Feed-forward inference:
the control module adapts the domain from natural images to
UV texture space without compromising diversity, enabling
3D generation in a feed-forward manner within 5 seconds.

Our generation pipeline consists of two main stages: Ge-
ometry Proxy Generation and Fine 3D Generation. In the
first stage, we propose a geometry selection strategy, which
combines the RGB image, rendered geometry image, and
corresponding facial attribute, to select the optimal geometry.
In the second stage, our albedo diffusion takes text descriptions



as input and is controlled by the 3D-aware priors defined by
the selected geometry proxy in texture space. This enables
the generation of fine-grained geometry details (displacement
map) and physically-based rendering (PBR) appearance. Con-
trolFace supports fine geometry control for synthetic textures
including wrinkles, eyelids, and even topology. Furthermore,
our model supports stylized 3D face generation and image
guidance by seamlessly transferring 2D generation techniques
into the 3D domain without 3D supervision.

In summary, our main contributions are: 1) A novel frame-
work for generating high-quality digital faces, using text and
image guidance. Our approach combines the diversity inherent
in pretrained text-to-image diffusion models with the 3D facial
priors; 2) A controllable diffusion generative model that can
generate high-quality PBR facial maps, supporting few-shot
training(requires only a minimal dataset consisting of 36 3D
faces) and fast generation in a feed-forward manner within 5
seconds; 3) various applications of manipulations and controls,
allowing for both localized and global editing (repainting and
stylization) and precise adjustments to facial geometry at both
detailed (e.g., wrinkles) and overall levels (e.g., topology).

II. RELATED WORK

A. General 3D Content Generation

Image generation has made significant advancements in
the recent decade, including GANs [11] and Diffusions [12],
thanks to the development of generative models and the
availability of large-scale datasets. These image generation
models also contributed valuable insights for 3D generation.
Inspired by the success of implicit representations such as
NeRF [7], several works [13]–[15] effectively combine them
with pre-trained diffusion models, enabling 3D generation by
using SDS [6], although it suffers from over-smoothing, over-
saturation, and long per-case optimization time. The following
works leverage multi-view image generation in the way of
feed-forward or improved optimization based on SDS [16],
[17] to improve the quality and fidelity of 3D generation. The
multi-view generation still faces the problem of inconsistent
objects under different views. Overall, it’s hard to find a
balance between time-consuming and quality. Despite the
rapid development of 3D datasets [18], the size of the 3D
dataset is still smaller compared to the vast amount of data
used in 2D large-scale model training.

B. 3D Face Generation

As a sub-task of text-to-3d generation, text-guided 3D face
generation has made significant progress. Current researches
often use implicit representation to generate avatars, includ-
ing feed-forward by GANs [19] or DMs [20], [21] and
optimization-based methods [9], [22], [23]. Although They can
create visually appealing avatars from text or images, they are
not compatible with existing computer graphics pipelines and
have limitations in animation, high-resolution rendering, and
re-lighting than explicit 3D faces. For explicit representation,
several 3D GANs work on a certain face dataset and suffer
from limited diversity [24]–[26]. Additionally, GAN models

often face mode collapse issues, limiting their scalability
for large-scale dataset training. Although CLIP-based opti-
mization can be integrated to enhance generation diversity
like [27], it is still restricted by dataset size. [10] achieve
diverse generation through SDS-based optimization with fine-
tuned vision-language models but rely on large, expensive
datasets containing over 1,000 3D face assets and involve time-
consuming iterations for each generation. [28] finetune the U-
Net from Stable Diffusion on 188 super-high quality samples
to generate UV maps. In contrast, we focus on generating
computer graphics-friendly 3D digital humans via few-shot
learning. We only rely on a compact dataset comprising 30+
3D facial assets. Importantly, different from most, our method
supports fast generation in a feed-forward manner, eliminating
the need for time-consuming inference-time optimization, and
supporting fine geometry control simultaneously.

III. METHOD

ControlFace, as illustrated in Fig. 2, is a novel generative
framework that integrates the Latent Diffusion Model (LDM)
with 3D-aware controls to generate high-fidelity 3D faces.
In our method, we utilize a combination of base shape gb
and displacement map v to represent the face geometry. The
base shape is represented using a triangle mesh with unified
topology, while the displacement map allows for adjustments
to the position of each vertex on the facial surface. The
appearance properties of faces are modeled by physically-
based, spatially-varying bidirectional reflectance distribution
functions (SVBRDFs) including diffuse albedo kd, surface
normal n, specular albedo ks, and specular roughness r.

ControlFace consists of three main modules: geometry
proxy generation, 3D-aware albedo diffusion, and fine-grained
facial generation. In the geometry proxy generation module,
we select the optimal base geometry gb from a set of pre-
built face candidates, which are reconstructed from 2D facial
images. To facilitate the controllable generation, we render the
base geometry into UV texture space maps, serving as the 3D
facial priors in the subsequent stage. In the albedo diffusion,
our core generative network, conditioned by the texture-space
3D facial prior, generates a high-quality facial albedo map
kd according to the input text. Finally, we generate the fine-
grained geometry details, represented by displacement map
v, and PBR material maps {ks, n, r} from the albedo map
through image-to-image translation techniques.

A. Geometry Proxy Generation

Recent approaches [10] rely on the similarity between
text and rendered geometry images to guide the selection
process. However, they face limitations in capturing detailed
characteristics due to the lack of facial appearance details in
the rendered images. To address this challenge, we incorporate
additional information from portrait images and facial features
to resolve ambiguities in matching text and mesh.

We construct the candidate pool with 8,425 samples using
the CelebA-HQ. Specifically, for each image Ii in CelebA-HQ,
we utilize a single-image 3D face reconstruction method [29]
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Fig. 2. Overview. Given a text description (”a face of [xxx]”), ControlFace can select the best matching geometry proxy by the Geometry Proxy Generation
module. Then, the 3D-aware Controllable Albedo Diffusion generates correlated albedo with the text guidance or optional image guidance. Finally, high-quality
PBR textures and detailed geometries are provided by the Albedo-To-PBR model together with the Super Resolution network.

to obtain the corresponding 3D face shape gi. To select the
optimal geometry proxy from candidate set S = gi, Ri, Ii, fi,
where Ri consists of 10 texture-less rendering images under
different camera view, fi is the facial attributes provided by
CelebA-HQ, our selection process is driven by a matching
loss, including the text-to-render similarity LR, the text-to-
image similarity LI , and the text-to-attribute similarity Lf :

L = LR(t, Ri) + LI(t, Ri) + Lf (t, fi),

LR = λR
d ei(Ri) · et(t) + λr∆ei(Ri) ·∆et(t),

LI = λI
dei(Ii) · et(t),

Lf = λtet(f) · et(t),

(1)

where ei(·) = norm(EI(·)) is the normalized image features
generated by CLIP’s image encoder EI , et(·) = norm(ET (·))
is the normalized text features generated by CLIP’s text
encoder ET , ∆ei = ei − ēi,∆et = et − ēt are the relative
similarity [9], ēt, ēi represent the embedding of an anchor text
(e.g. “a face of”) and the renderings of the mean mesh ḡi. We
select the highest matching score as our geometry proxy.

B. 3D-aware Controllable Albedo Diffusion

A high degree of similarity was observed between facial
texture and rendering images. This relationship can be ef-
fectively modeled through an underlying geometric control
module. Inspired by ControlNet [30], we propose 3D-aware
controllable albedo diffusion, which takes text descriptions ct
as input and utilizes a texture space facial prior c to condition
our control module C, enabling the generation of high-quality
albedo maps kd. Specifically, we render the geometry proxy
gb to geometry normal map cn in UV texture space. Unlike
general image generation, facial texture generation requires
precise topological alignment to ensure that facial features
are located in specific regions. The texture-space normal
control offers dense, pixel-wise controls for geometrically
related detail features such as wrinkles. Compared to generic
diffusion models, our method excels in precise control over the
generation process by the efficient incorporation of 3D prior.

The architecture of our control module follows the same
design as described by [30]. It consists of two parts: a
locked copy of a large pre-trained model and a trainable copy
that is connected using zero-convolution layers. Specifically,
our control module takes the 3D-aware control condition
c ∈ R3×512×512 as input and uses a small network consisting
of four convolution layers to encode the image space condition
c into a feature space cf ∈ R4×64×64. This ensures that
the resolution of the encoded condition features matches the
resolution of the latent space in the stable diffusion model.
To incorporate the encoded condition cf into the generative
process, we clone the trainable parameters of encoder blocks
and the middle block of the UNet architecture. These cloned
blocks are used to extract features from the encoded condition
cf . These features are then added back to the decoding blocks
and middle blocks of the UNet through skip connections.

The training objective L of our control module is:

L = Et,cf ,ct,ϵ∼N(0,1),t

[
∥ϵ− ϵθ (zt, t, cf , ct)∥22

]
, (2)

where t represents the time step, ct is the text prompt, cf is
the latent feature of our 3D-aware condition c, ϵθ denotes the
denoising UNet, and zt is the noisy image.

Non-uniform time step sampling: We have observed that
the impact of 3D-aware conditional control is more significant
in the early phases of denoising sampling compared to the
later stages. To enhance the control capabilities and accelerate
convergence, we draw inspiration from [31] and utilize a cubic
function to implement non-uniform time step sampling during
training: t = (1 − ( t

T )
3) × T, t ∈ U(0, T ). This approach

allows us to allocate more time steps to the earlier stages of
the denoising process and thus helps to maximize the impact
of 3D-aware control.

C. Detailed Geometry and PBR Material Generation

The detailed facial geometry, as captured by displacement
maps, alongside the physically-based material maps, plays a
crucial role in achieving realistic digital human renderings.



Fig. 3. Generation results. We present the generation results of ControlFace,
showcasing a diverse range of avatars created using various prompts. The
first 4 rows demonstrate individuals described by general prompts, while
subsequent rows showcase fictional characters and celebrities.

Fig. 4. Examples generated under geometry proxy guidance. We fix the
prompts and seeds in (a), and ControlFace can generate geometry-related
textures, such as wrinkles(left) and eyelids(right). In (b), ControlFace can
synthesize out-of-doimian topology texture by giving geometry normals.

Recognizing that both the displacement map and physically-
based material maps exhibit strong pixel-level correlations
with the albedo map, we introduce an image-to-image trans-
lation network to faithfully generate the detailed geometry (v)
and material maps ({ks, n, r}) directly from the input diffuse
albedo map (kd). To keep diversity in PBR appearance, we
utilized and finetuned the SVBRDF decoder in [32] on our
facial assets. The training loss is the sum of three terms:

L = λmapLmap + λpLp + λganLgan, (3)

where Lmap is the L1 loss on the reconstructed maps, Lp

is a perceptual loss, and Lgan is the Patch GAN loss. In our
setting, we set λr = 2, λp = 0.5, λg = 0.5. To further improve
the quality, we introduce a texture alignment and super-
resolution module. Texture alignment is used to fix pixel-
level misalignments in texture space after albedo generation;
the super-resolution module is used to produce pore-level
details for PBR materials and further enhance the realism of
rendering. For more details please refer to supplementary.

IV. RESULTS

A. Implementation Details

Dataset: To generate high-quality 3D faces with PBR
textures, a dataset of 36 text-asset pairs was constructed.

Fig. 5. Local manipulation and style transformation. Fig (a) and (b) showcase
the local repainting through hand-made masks. In Fig (c), ControlFace
converts the digital human into a comic style by adding the prompt “comic
style”. Fig (d) showcases personalized stylization using the pixel style LoRA.

This dataset comprised 32 randomly selected samples from
the commercial 3DScanStore [33] and four manually created
examples featuring accessories such as face masks and eye
covers. Further data augmentation is detailed in the supple-
mentary material.

Setting: Experiments were conducted on a single Nvidia
RTX 3090 GPU, and the training employs the Adam optimizer.
The 3D-aware generation model was trained for 20 epochs
with a learning rate of 5 × 10−6. For PBR material genera-
tion, individual UNet networks were trained for each specific
output, using a learning rate of 1× 10−5 for 30 epochs.

B. Generation Results

ControlFace exhibits remarkable diversity by generating
avatars with different clothing, accessories, skin tones, or
even non-human features such as orcs, which are out of
our training distribution. Moreover, ControlFace is capable
of generating avatars with a high degree of resemblance to
the given name or detailed description, without additional
optimization processes, as shown in Fig. 3. Furthermore, we
provide extended results of diversity affected by initial random
noise in supplementary.

Geometry Proxy Control: Geometric normal maps provide
dense guidance enriched with 3D geometric priors, making
accurate controlling possible as shown in Fig. 4a. Geometry
topology defines the way to project 3D models’ surface
to textures. Leveraging geometry control, ControlFace can
perform zero-shot control of topology with the guidance of
the geometry normal map extracted from the target topology.
As shown in Fig. 4b, we generate the texture on different
out-of-domain topologies including Vface [33], Flame [34],
HIFI3D [35], and MetaHuman [36].

Local Manipulation and Style Transformation: Apart from
the generation process, ControlFace can further perform local
manipulation based on image-to-image and inpainting. As
shown in Fig. 5a&b, with only a rough mask, ControlFace
can modify local appearance, such as recoloring lips or adding
tattoos and decals with text prompts. Furthermore, we can
transfer the texture style while maintaining the recogniz-
able identities by image-to-image generation. As shown in
Fig. 5c&d, we enable the personalized stylized generation or
transformation, such as a comic style or pixel art, by simply
replacing the text prompts or using Lora as a Style Adaptor.

Image Guidance Generation: With pre-trained IP-Adapter
[38], ControlFace is capable of providing precise control over
avatars’ identity-specific styles with an image prompt as shown



TABLE I
QUANTITATIVE COMPARISON OF CLIP SCORE AND INFERNECE TIME.

CLIP Score ↑ Inference Time ↓
AvatarClip [9] 0.284 ∼ 5 hours
DreamMat [17] 0.234 ∼ 30 mins
ChatAvatar [37] 0.282 ∼ 30 sec
ClipFace [27] 0.262 ∼ 30 mins

ControlFace(Ours) 0.312 ∼ 5 sec

TABLE II
QUANTITATIVE COMPARISON OF IMAGE GUIDANCE GENERATION.

1-cosine↓ l1 ↓ l2↓ CLIP Score↑
w/o. image 0.879 6.348 1.321 0.568
w. image 0.821 6.065 1.274 0.593

Fig. 6. Quanlitative comparison of generation quality with other methods.

Fig. 7. Results of image guidance. ControlFace is capable of facilitating
digital makeup imitation and identity injection with image (bottom-left).

in Fig. 7. Moreover, to verify the effectiveness of image guid-
ance compared with text guidance, we evaluate the semantic
similarity of CLIP [3] and the l1, l2 and 1-consine similarity
of DeepFace [39] on FFHQ. Specifically, we sampled 1000
images from FFHQ and utilized CLIP Interrogator 1 to collect
corresponding text prompts. Then, we generated 3D faces
with and without image guidance separately and compared the
similarity between rendering images and images in FFHQ. The
comparison in Table II shows that the image guidance module
enables more consistent features than text-only guidance.

C. Comparison

We compare ControlFace with the other 3D digital human
generation methods in Fig. 6, including AvatarClip [9], Dream-
Mat [17], ClipFace [27] and ChatAvatar [37], in terms of Clip
Score and inference time (see Table I). Following [10], we

1huggingface.co/spaces/pharmapsychotic/CLIP-Interrogator

generated 10 different characters, including people generated
by general descriptions, celebrities, and film characters. All
prompts used for generation followed the same anchor: “a face
of xxx”. We use “ViT-L/14” as the pre-trained CLIP model.
As a result, ControlFace produces results that exhibit a higher
resemblance to text descriptions with less inference time.

Fig. 8. The catastrophic forgetting of the finetuned SD model. The first row
showcases the generation results of the fine-tuned SD model, while the second
row presents the generation results of ControlFace using the same prompt.

Fig. 9. Comparison of improved geometry selection.

D. Ablation study

Comparison with Finetuning: Direct fine-tuning of the
pre-trained Stable Diffusion model with limited training data
leads to catastrophic forgetting caused by overfitting. As
illustrated in Fig. 8, the Stable Diffusion model, fine-tuned
with a dataset of merely over 30 samples, exhibits significant
overfitting and fails to generate fictional characters. On the
other hand, refraining from overriding the pre-trained param-
eters of Stable Diffusion, ControlFace maintains the model’s
generation and generalization abilities.

Improved Geometry Selection: To validate the effective-
ness of the image-guided geometry proxy generation, we
conduct the experiments with or without image guidance and
select the one with the highest clip score for each method to
ensure fairness. As shown in Fig. 9, when matching some de-
scription of facial details, the method without image guidance
fails to select the best matching result. In contrast, our method
obtains more accurate matching results. It demonstrates the
effectiveness of our proposed method.

V. CONCLUSION

In this paper, we propose ControlFace, a novel diffusion-
based generative model that incorporates 3D-aware controls
to enable the creation of customized, high-quality 3D facial
assets. ControlFace can achieve few-shot learning, leveraging
a compact 3D face dataset consisting of just 30+ samples.
Our generative model is highly efficient, allowing for training



within an hour and generating high-fidelity results in only
seconds. We demonstrated the effectiveness of our ControlFace
method in generating and editing a wide variety of digital
characters, guided by multi-model controls including text
prompts, character portrait images, styled reference images,
and 3D-aware controls.
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