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In this material, we supplemented details of related tech-
niques and the texture argumentation module we use to
further improve the quality and alignment of generated PBR
materials. Furthermore, we evaluated the generation diversity
of ControlFace and compared other alternatives of geometry
proxy such as landmarks in UV space.

I. RELATED TECHNIQUES

A. Personalized Style Adaptation: LoRA

Addressing the challenge of integrating personalized styles,
often characterized by a limited set of reference design paint-
ings, into generic stable diffusion models presents significant
difficulties. There is a large gap between the amount of a
typical style reference set and the data used in generic diffu-
sion model training, which leads to overfitting and implausible
generation with naive fine-tuning strategies.

To enable personalized stylized generation, we introduce
a style control module based on LoRA [1]. This module
injects a compact trainable module into each transformer layer
while freezing the main part of the pre-trained stable diffusion
models. For a pre-trained weight matrix W0 which is frozen
and does not receive gradient updates, LoRA updates the low-
rank decomposition by a trainable A and B matrix, where
B ∈ Rd×r, A ∈ Rr×d. Here, r is the rank and d is the
dimension. Given the input x, the forward pass yields:

h = W0x+∆Wx = W0x+BAx (1)

For a given personalized style, we train the LoRA module
on a dataset consisting of around 20 reference images with
the desired target style. The trained style control module is
responsible for extracting the character style information and
collaborates with our 3D-aware generative model to produce
high-fidelity 3D characters with the specified style. Notably,
the style reference images are not limited to portrait images
but can encompass a broader range of general images, such
as paintings. This flexibility further expands the potential
applications of our approach.

B. Image-guided Generation: IP-Adapter

While text descriptions can guide our generative model to
produce diverse and imaginative results, their capability to
provide precise control over identity-specific or spatial features
is limited. We introduce an image guidance module that
leverages input portrait images to guide our generative model
in reproducing digital humans with similar characteristics to
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Fig. 1. Texture Alignment Pipeline. “Face Parsing” is implemented by a
face parsing network to obtain a face segmentation. “Connected Component
Analysis” is to find control points(red points) and target points(blue points).
Finally, “Image Wrapping” is used to execute non-rigid transformations based
on control and target points. Employing two-step texture alignment, we
achieved precise alignment of the texture at the corners of the eyes.

the 2D input image. Note that the image and text prompts are
independent and can be used together to jointly influence the
digital human generation process.

We adopt the IP-Adapter architecture [2] to handle the
image prompt. For an input image prompt pi ∈ RH×W×C ,
we first extract the image features epi

= EI(pi) using the
CLIP image encoder EI . We then project the image features
epi into the style features fpi ∈ RN×4 via a linear layer with
layer normalization. These style features are incorporated into
the frozen denoising Unet model through a decoupled cross-
attention module.

Given the style features fp extracted from the reference
image, the text features ft and the query features q, the output
of decoupled cross-attention module O is as follows:
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where Q = qWq , K = ftWk, V = ftWv are the query, key,
and values matrices of the freezen UNet attention operation
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v are the query, key,
and values matrices of the new cross-attention layer which
are trainable in the decoupled cross-attention module. In the



Fig. 2. Samples with same text prompts but different seeds. We sample several appearances of common persons and Orcs for the male face geometry and
Na’vi and aliens for the female face geometry. ControlFace shows high diversity under the same text guidance.

Fig. 3. Visualization of super-resolution PBR Assets. The first row illustrates
a comparison of rendering results between the utilization of low-resolution
PBR materials and high-resolution PBR materials. The second row presents a
comparison of normal, specular, and roughness maps between low and high
resolution.

decoupled cross-attention module, the same query is utilized
for both image and text cross-attention.

II. TEXTURE AUGMENTATION

A. Texture Alignment: TPS

Although our 3D-aware control condition provides strong
3D-consistent priors, we observe minor pixel-level misalign-
ments in the texture space, particularly in areas such as
the eyes and mouth corners. To address this, we integrate

a two-step process involving facial parsing and non-rigid
transformation techniques to enhance the alignment. First, we
employ a facial parsing algorithm [3] to accurately segment
and identify distinct facial features within the texture space.
Subsequently, along the boundaries of the connected regions,
we place control points at intervals of every 5 pixels in the
horizontal direction. Then, we apply a proportional scaling
towards the center based on preset height and width thresholds
to obtain target points. Following segmentation, we apply the
Thin Plate Spline (TPS) algorithm [4] to execute non-rigid
transformations based on the control and target points. TPS
allows us to deform and adjust the segmented facial features,
aligning them perfectly within pre-annotated regions in the
texture space. The main pipeline of Texture Alignment is
illustrated in Fig. 1.

B. Two-Stage Texture Super-Resolution Module

To further enhance the realism of the rendering, we enhance
the material maps from 512×512 resolution to 4, 096×4, 096
resolution. We observed that training an 8× super-resolution
network to produce pore-level details is time-consuming
and challenging. Therefore, we introduce a two-stage super-
resolution strategy. Firstly, we upsample the resolution from
512× 512 to 1024× 1024 to restore the main facial features.
Secondly, we further employ a 4× upsampling to produce
pore-level details.

III. TRAINING DETAILS

A. Data Pre-process

High-quality 3D faces are scarce, especially the exquisite
geometry and corresponding PBR textures. These are not
satisfied by the public dataset. Therefore, we obtain our dataset



Fig. 4. Extra result of Zero-Shot topology control. We take the geometry normal map of MetaHuman topology as input(upper-left) and generate different
faces in the corresponding topology, which can be verified by the textures under each case.

Fig. 5. Extra result of landmarks control. Following the experiments for zero-shot topology control, we sample faces under the same prompts. Under the
control of Master Model topology landmarks (upper-left), ControlFace is capable of generating out-of-domain faces like the geometry normal map does.

from commercial 3DScanStore. With 36 faces, we unified
all these samples into our facial topology including 20,971
vertices and 41,836 faces, and carried out manual annotations.
To increase data diversity and mitigate mode collapse, we
implemented pairwise alpha blending, yielding 272 training
samples. For geometry proxy, we utilize the FaRL framework
[3] to detect 68 facial landmarks and employ a rasterization-
based renderer to render the normalized geometry normal of

the geometry proxy into UV texture space. The XYZ channels
of the rendered texture represent the orientations of the left,
upper, and frontal directions, respectively.

To further enhance the training data, we employ the fol-
lowing data augmentation techniques. Firstly, we use facial
landmarks as control points and group them based on facial
semantics. Then, we utilize two different translation strategies
for data augmentation. One entails shifting all landmarks



Fig. 6. Comparison of out-of-domain topology results under other geometry
proxy control. Our new model trained on Master Model landmarks fails in
synthesizing out-of-domain topology (MetaHuman).

horizontally or vertically by 0-20 pixels. The second strategy
is to apply translations to each semantic group. Each semantic
group is randomly translated horizontally or vertically by 0-
20 pixels, ensuring no intersection between semantic groups.
We consider the translated control points as target points.
Subsequently, we use the TPS algorithm to warp both the
diffuse albedo and the 3D-aware control condition based on
paired control points and target points. This data augmentation
strategy allows our method to adapt to various geometry
topologies without the need for retraining.

B. Training

1) 3D-aware Albedo Diffusion: During training, we freeze
the pre-trained parameters of the UNet in the stable diffusion
model and fine-tune the trainable parameters in ControlNet.
Specifically, we initialize our control module using the official
pre-trained models control v11p sd15 normalbae 1. Our
experiments are based on SD v1.5 2. To enhance the details
and realism of our generated results, we employed the pre-
trained checkpoint epicrealism pureEvolution 3, as the base
model to train our ControlFace. In the training process, we
randomly drop out part of the prompts with a probability of
50%. This approach directed the network to concentrate more
on the input 3D-aware conditions.

2) Detailed Geometry&PBR Material Generation: We no-
ticed that training the albedo-to-material mapping using rel-
atively low-resolution images leads to a noticeable loss of
fine-scale skin details. To mitigate this issue, we crop patches
of size 512× 512 from high-resolution material maps. These
patches are generated with varying positions, scales, and
flip orientations. Finally, we employ linear blending across
multiple instances of the data to enhance the robustness and
generalization capabilities of our model.

3) Super-Resolution module: In our implementation, we
follow the network architecture of Real-ESRGAN [5] in both
stages. Note that each material map is enhanced separately.
The training loss is a combination of L1 loss, perceptual loss
based on VGG19, and a GAN loss, as introduced by [5]. We
finetune the Real-ESRGAN 2× with the Unet for 10 epochs.

1https://huggingface.co/lllyasviel/control v11p sd15 normalbae
2https://huggingface.co/runwayml/stable-diffusion-v1-5
3https://civitai.com/models/25694?modelVersionId=94744

We finetune the Real-ESRGAN 4× Super Resolution network
for 20k training iterations separately. The learning rates of
both are 1× 10−4.

IV. EXTRA RESULTS

A. Diversity
In addition to generating diverse faces under different text

prompts, we further evaluate the diversity from different seeds.
Under the fixed geometry and prompt, we sampled different
albedo textures using different seeds in Fig. 2. As a result,
ControlFace shows high diversity in generating various faces
under different seeds by giving a certain prompt.

B. Physically-Based Rendering Assets
Constrained by the low resolution, PBR textures of 512

resolution fail to provide a wealth of skin details, leading to
over-smoothing rendering. The outcomes of our Albedo-To-
PBR module are depicted in Fig. 3. The results demonstrate
that our two-stage super-resolution strategy restores pore-level
skin details from low-resolution PBR textures, significantly
enhancing the realism of the rendering outcomes.

C. Generation Results for Out-of-domain Topology
We only train our generative model on Master Model

topology, without MetaHuman topology geometry, and we
demonstrate the ability to generate out-of-domain faces and
topologies in the main paper. Here, we further evaluate the
effectiveness of topology control for generating out-of-domain
faces. As shown in Fig. 4, ControlFace can also generate
diverse faces under the control of another topology.

D. Other Geometry Proxy
Similarly, landmarks in UV texture can introduce the priors

of topology in UV texture space, in a sparse way. We further
evaluated the effectiveness of landmarks control for generating
out-of-domain identities(see Fig. 5) and topology(see Fig. 6).
Using landmarks as a condition can preserve the generative
diversity from the pre-trained Stable Diffusion model, while
it struggles to generate the texture in out-out-domain topolo-
gies, such as MetaHuman, due to the sparse representation
compared with geometry normals.
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