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Abstract—Existing material creation methods are limited in
diversity due to the scarcity of real-world data. To enhance
controllability and diversity, we propose DreamPBR, a diffusion-
based generative framework that creates spatially varying ap-
pearance properties guided by text and multimodal controls.
By integrating large-scale vision-language models trained on
billions of text-image pairs with material priors from hundreds
of Physically Based Rendering (PBR) samples, we achieve high-
quality PBR material generation. We employ a material Latent
Diffusion Model (m-LDM) to map albedo maps to latent space,
which is then decoded into full Spatially Varying Bidirectional
Reflectance Distribution Function (SVBRDF) parameter maps
via a rendering-aware PBR decoder. To achieve diverse control,
we introduce a multimodal guidance module that includes image
and 3D shape guidance. We demonstrate DreamPBR’s effective-
ness in material creation, showcasing its versatility and user-
friendliness across various controllable generation and editing
applications.

Index Terms—Physically Based Rendering, SVBRDF, Multi-
modal Deep Generative Model, Deep Learning

I. INTRODUCTION

High-quality materials are crucial for photorealistic render-
ing. Although appearance modeling has advanced significantly,
generating new materials remains challenging. Reconstruction-
based methods estimate surface reflectance from photographs
using either optimization-based inverse rendering [1]–[3] or
deep neural inference [4], [5]. However, these rely on real-
world images, limiting their capacity for creative material
generation.

Generation-based works [2], [6] apply Generative Ad-
versarial Networks (GANs) [7] to material generation, but
their datasets comprise only hundreds to thousands of ma-
terials—far fewer than the billions in large-scale language-
image models—limiting diversity. They also face challenges
like unstable training, mode collapse, and poor scalability.
Therefore, [8], [9] provide initial validation of the potential
of diffusion models for 3D content generation. However, they
mainly produce implicit representations or textured meshes,
lacking the capacity to disentangle physically based materials
and illumination.

To address these challenges, we present DreamPBR, a
novel generative framework for creating high-resolution spa-
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Fig. 1. DreamPBR, an innovative material generation framework, enables
personalized creation with multimodal controls. We present various controls
such as text descriptions (4, 5, 6, 7), binary images (2, 9, 10), RGB images (3,
11, 12, 13), segmented geometry (8), and their combination (1) in this figure.
The high-quality and tileable textures from DreamPBR show high applicability
in different objects.

tially varying bidirectional reflectance distribution functions
(SVBRDFs) conditioned with text inputs and a variety of
multimodal guidance. DreamPBR provides both flexibility and
controllability, generating semantically accurate, detailed ma-
terials—ranging from structured, repetitive patterns to imagi-
native, dynamic designs (in Fig. 1).

The key idea of our method is to integrate pretrained
2D text-to-image diffusion models [10] with material priors
to generate high-fidelity and diverse materials. Although 2D
LDMs excel at generating natural images, they struggle with
spatially varying, physically based materials. To address this,
we propose a novel material LDM (m-LDM) using a two-
stage strategy. In the first stage, we fine-tune the LDM from
text-to-image to text-to-albedo, effectively distilling from a
large source domain (natural images) to a smaller target
domain (albedo maps). In the second stage, we employ a PBR
decoder to reconstruct full SVBRDFs from the latent space,
using a decoder-only architecture to ensure strong correlations
among all parameter maps. This approach maintains generative
diversity, as the denoising U-Net remains unchanged. Addi-
tionally, a highlight-aware decoder refines all maps, enhancing
regularization and overall fidelity.

To ensure diverse control and user-friendliness, we intro-
duce a multimodal guidance module designed to serve as
the conditioning mechanism for our material LDM. Specifi-



cally, this guidance module includes three key components:
(1) Pixel Control allows pixel-aligned guidance from inputs
like sketches or inpainting masks, (2) Style Control extracts
style features from reference images and employs them to
guide the generation process, and (3) Shape Control enables
automatic material generation for a given 3D object with seg-
mentations with an optional 2D exemplar image for reference.
Importantly, our framework supports the seamless concurrent
use of multiple guidances.

We train our DreamPBR on a publicly available SVBRDF
dataset, comprising over 700 high-resolution SVBRDFs.
Moreover, we achieve seamless tileable material generation
by applying circular padding to all convolutional operations.
As a result, DreamPBR demonstrates its ability to generate
high-fidelity, diverse, and customizable materials, effectively
bridging the gap between text-driven creativity and physically
based realism.

II. RELATED WORK

A. Material estimation

Material estimation approaches aim to acquire material data
from real-world measurements under varying viewpoints and
lighting conditions. Traditional methods often rely on multiple
images or video sequences captured by a handheld camera,
using regularization techniques or leveraging material priors
to estimate appearance properties and simplify the problem,
especially given the limitations of lightweight setups.

In recent years, deep learning-based methods have shown
significant progress in recovering SVBRDFs from single im-
age [4], [5], [11]–[14]. These methods employ deep convo-
lutional neural network to predict plausible SVBRDFs from
in-the-wild input images in a feed-forward manner. A single-
image-based solution was extended to multiple images through
latent space max-pooling by [15]. A deep inverse rendering
pipeline that enables appearance estimation from an arbitrary
number of input images was introduced by [1]. In the domain
of procedural material modeling, material parameters with
fixed node graphs are optimized to match input images by
some methods [3], [16], [17]. A new pipeline that eliminates
the need for predefined node graphs was introduced by [18].
Most recently, a diffusion-based model for estimating material
properties from a single photograph was proposed by [19].

The methods mentioned above rely on captured photographs
to reconstruct material and cannot produce non-real-world
materials. In contrast, our approach can generate diverse and
creative SVBRDFs using natural language inputs.

B. Material generation

GAN-based methods show advantages in generating high-
resolution and visually compelling materials. [2] proposed an
unconditional MaterialGAN for synthesizing SVBRDFs from
random noise. The learned latent space facilitates efficient
material estimation in inverse renderings. [6] developed a
StyleGAN2-based model, conditioned by spatial structure and
material category, for tileable material synthesis. However,
their diversity is constrained by the training instability of

Material

LDM

UNet

Q

KV

Q

KV

Q

KV

Q

KV

CLIP
“a PBR material of 

[material tags]”

Text prompt

Inference

Rendering-aware

super-resolution

X4

Render

Training

Encoder

Gaussian noise

Inference

Pixel

Control

Style

Control

Convolution

LLM

Material

Prediction

Shape

Control

Binary

Image

RGB Image

Im
a
g
e

E
n

c
o
d

e
r

Segmented

Geometry

Example

Image

++

Multimodal Control

Fig. 2. Overview of DreamPBR: The denoising UNet in our Material LDM
is trained with only albedo textures (upper left) and a PBR Decoder with
Highlight Aware Decoder is used to transform albedo textures to other
physically based textures (middle right). In the blue box on the left, we
present three individual control modules: Pixel Control, Style Control, and
Shape Control, whose results under controls are shown on the lower right.
Besides, an additional Rendering-aware-super-resolution module is given for
higher-quality textures (upper right).

GANs and the limited range of training datasets. In procedural
material generation, [20] first introduced a transformer-based
autoregressive model. Later work by [21] proposed a multi-
model node graph generation architecture for creating high-
quality procedural materials, guided by both text and image
inputs. While procedural representations are compact and
resolution-independent, they are limited to stationary patterns
and cannot create arbitrary styles.

The closely related work to ours is ControlMat [22], a
diffusion-based material generative model, capable of gener-
ating tileable materials using text and a single photograph as
input. Despite augmenting the data in the material domain, this
dataset is relatively small compared to the billions of text-
image pairs used in text-to-image diffusion model training.
Furthermore, this work only supports guidance of text and a
single photograph, limiting the scenario scope.

In contrast, our method significantly enhances material gen-
eration diversity through the efficient integration of pretrained
diffusion models with material priors. We also provide a
variety of user-friendly controls for guiding the generation
process, expanding the scope and flexibility of applications.

III. METHOD

A. Overview

DreamPBR is an LDM-based generative framework capable
of producing diverse, high-quality SVBRDF maps under text
and multimodal guidance, as illustrated in Fig. 2. The goal
of our method is to generate spatially varying materials which
are represented by the Cook-Torrance microfacet BRDF model
with GGX normal distribution function [23]. Specifically,
we use metallic-based PBR workflow and represent surface
reflectance properties as albedo map P , normal map N , rough-
ness map R, and metallic map M. Here, P,N ∈ RH×W×3,
M,R ∈ RH×W×1, H = W = 512.

The core generative module of our framework is the m-
LDM, where the textual description T guides the denoising



process to encode high-dimensional surface reflectance proper-
ties into a compact latent representation z. This representation
effectively compresses complex material data and guides the
SVBRDF decoder in reconstructing detailed SVBRDF maps
S = {P,N ,R,M}. Our critical observation is that while
pre-trained text-to-image diffusion models can capture a wide
range of natural images that fulfill the diversity needs of ma-
terial generation, their flexibility often leads to less plausible
materials due to the absence of material priors. Instead of
training material LDM from scratch with limited material data,
we opted to fine-tune a pre-trained text-to-image diffusion
model with target material data. This strategy effectively
tailors the model from a broad image domain to a specific
material domain, ensuring both diversity and authenticity of
output.

Our multimodal guidance module integrates three control
modules to enhance material generation. The Pixel Control
module provides spatial guidance using pixel-aligned inputs
like sketches or masks. The Style Control module extracts
feature from image prompts to adapt the material LDM
via cross-attention. The Shape Control module automatically
generates SVBRDF maps for segmented 3D shapes, leveraging
large language models for text prompt creation and optionally
incorporating 2D photo exemplars for part-specific material
generation.

B. Physically Based material diffusion

Our material LDM uses CLIP’s text encoder τ(·) [24] to
extract text features τ(T ) from user prompts T , and transforms
these features into a latent representation z for the SVBRDF
maps S. The latent space is characterized by a Variational
Autoencoder (VAE) architecture E [25]. Specifically, an albedo
map P is compressed into a latent space z = E(P).

The core component of the diffusion model is the denois-
ing U-Net module [26] which is conditioned on timestep t.
Following Denoising Diffusion Probabilistic Models (DDPM)
[27], our model employs a deterministic forward diffusion
process q(zt|zt−1) to transform latent vectors z towards an
isotropic Gaussian distribution. The U-Net network is specif-
ically trained to reverse the diffusion process q(zt−1|zt),
iteratively denoising the Gaussian noise back into latent
vectors. Adopting the strategy proposed by [10], we incor-
porates the text feature τ(T ) ∈ RM×dτ into the interme-
diate layer of U-Net through a cross-attention mechanism
Attention(Q,K, V ) = softmax

(
QKT

√
d

)
· V , where Q =

W i
Q · φi (zt) ,K = W i

K · τ(T ), V = W i
V τ(T ), φi (zt)

represents an intermediate representation of the U-Net ϵθ, and
W i

V , W i
Q,W

i
K are learnable projection matrices.

Our material LDM is fine-tuned on text-material pairs via:

Lldm = EE(P),T,ϵ∼N(0,1),t

[
∥ϵ− ϵθ (zt, t, τθ(T ))∥22

]
, (1)

Here, ϵ represents the ground truth noise added to the latent
representation zt during the training process.

Seamless tileable texture synthesis is critical in material
generation, requiring consistent spatial patterns and artifact-
free tiling. To achieve this, we employ circular padding in all
convolutional layers, ensuring boundary continuity and pre-
serving internal patterns more effectively than zero padding.
This approach allows our model to directly produce tileable
material maps without extra post-processing and also enables
the transformation of non-tileable textures into tileable ver-
sions through image-to-image generation, maintaining visual
similarity with the original.

C. Render-aware SVBRDF decoder
The SVBRDF decoder, denoted as D = {DP ,DS}, de-

codes the unified latent representation z into SVBRDFs
S := {P,N ,R,M} = D(z). Specifically, we utilize separate
decoder networks: DP (z) for the albedo map P , and DS(z)
for other property maps {N ,R,M}. These decoder networks
follow the decoder architecture in VAE proposed by [25],
and are initialized with the weights from a pre-trained VAE
decoder.

Training of PBR decoder: The training loss function for our
PBR decoder DS comprises the following terms:

LPBR = Lmap + Lperp + Lgan + Lreg + Lrender, (2)

Lrender(x, y) = ∥log(x+ 0.01), log(y + 0.01)∥1, (3)

where Lmap is L1 loss on the material property maps, Lperp

is perceptual loss based on LPIPS [28], Lgan is the genera-
tive adversarial loss, Lreg is the Kullback-Leibler divergence
penalty, and Lrender is L1 log rendering loss applied to the
rendered images. The constant 0.01 in Lrender is added to
prevent numerical instability.

For the rendering loss, we adopt the sampling scheme
proposed by [29] to render nine images per material map,
ensuring desirable SVBRDF reconstructions by minimizing
errors in crucial material parameters.

To reduce highlight artifacts in albedo maps, we introduce
a highlight-aware albedo decoder DP specifically finetuned
on synthetic shaded-to-albedo data. While the standard VAE
decoder can generate plausible RGB images, it often produces
strong highlights for shiny materials like leather or metal. Our
decoder addresses this issue by training on various shaded
images rendered from our SVBRDF dataset under random
lighting and viewpoint configurations, which are then mapped
into latent space and decoded back to albedo using the VAE
loss [25]. This process ensures robust regularization, effec-
tively minimizing highlight artifacts and improving albedo
map quality.

To address the heavy need for high-resolution material
maps, we employ a material super-resolution module that en-
hances H×W SVBRDF maps to a resolution four times their
original size. This module comprises four Real-ESRGAN-
based [30] networks SRP , SRN , SRR, SRM , each special-
ized for a different SVBRDF map. We fine-tune these networks
on synthetic material data and incorporate a rendering loss
(similar to Eq. 3) to ensure that added details improve shading
fidelity rather than introducing artifacts.



D. Multi-model control

We propose three control modules for DreamPBR: Pixel
Control, Style Control, and Shape Control. These modules are
designed to be decoupled, allowing for flexible combinations
of multiple controls.

1) Pixel Control: Spatial property guidance is widely used
in material creation by artists. We introduce a Pixel Control
module using the ControlNet architecture [31] and spatial con-
trol maps, supporting both sketch-based generation and image-
to-image inpainting with binary masks. Starting from a pre-
trained ControlNet and fine-tuning it on our SVBRDF dataset
significantly enhances controllability and material quality. We
generate sketch guidance by extracting outlines from albedo
maps via Pidinet [32], ensuring spatially consistent SVBRDF
creation.

2) Style Control: The Style Control module extracts style
features from an image prompt using CLIP’s image encoder
and a decoupled cross-attention adaptation module [33]. Com-
bined with a text prompt, it enables multimodal generation.
By capturing the appearance and structural characteristics of
the input image, Style Control produces realistic, coherent
material maps that align with specific exemplar images, which
is a frequent requirement in the material design industry.

3) Shape Control: The Shape Control module takes a seg-
mented 3D model and an optional photo exemplar as input and
uses LLMs like ChatGPT [34] to enrich text prompts for each
segmented part, enabling automatic SVBRDF generation for
complex 3D shapes. Integration with Pixel and Style Control
modules further refines quality and detail. We incorporate the
TMT pipeline [35], which translates color and segmentation
information between the exemplar image and the 3D shape,
and employs a material classifier. Unlike [35], we do not
rely on predefined material sets. Instead, we utilize predicted
material labels and the exemplar image to produce diverse
creative materials through the DreamPBR pipeline, resulting
in unique 3D assets.

IV. EXPERIMENTS

A. Implementation Details

Our dataset includes 711 PBR materials, each with four
2k texture maps (albedo, normal, metallic, roughness) and
accompanying textual labels. The materials are sourced from
PolyHaven 1 and freePBR 2. We manually categorize them
into ten types: Brick, Fabric, Ground, Leather, Metal, Organic,
Plastic, Tile, Wall, and Wood. We fine-tune the material-LDM
with prompts in the format “a PBR material of [type], [name],
[tags],” where [type] is the category categorized before, and
[name] and [tags] are from the textual labels sourced from the
dataset. Tags are randomly retained at a rate of 30%-100%
during training.

We augment the 2k textures by flipping, rotating, multi-
scale cropping, and resizing them to H×W , adjusting normal
maps accordingly. For the highlight-aware albedo decoder, we

1https://polyhaven.com/
2https://freepbr.com/

Guidance Render SVBRDF Render SVBRDF Render SVBRDF

brick, narrow bricks,
walls

leather, smooth, white,
clean

tile, glass mosaic art,
translucent, decorative

tile, bathroom floor
tiles, non-slip, indoor

wall, tiled bathroom,
moisture-resistant

metal, scratched
scuffed metal

metal, reflective, car
trim

wood, burnt wood
finish, artistic, decor

brick, outdoor, man
made

wall, sticker wallpaper,
colorful, indoor

fabric, outdoor picnic
mat, durable

metal, metal plate, scifi

fabric, carpet ground, stone, outdoor wood

tile, encaustic cement
wall, concrete, cracked,

painted
brick, street brick,

outdoor

brick, street art leather ground, sidewalk

fabric, hand woven tile, marble wall, wallpaper

Fig. 3. Results of Pixel Control and Style Control. The first column represents
the Guidance, followed by the corresponding material generation results and
rendering effects. The text beneath each material represents the prompt used
to generate the material, with the uniform prefix “a PBR material of” omitted.

render these augmented textures under random viewpoints and
lighting [36], using the outputs as inputs. For the pixel control
module, we use Pidinet [32] to extract sketch representations
from albedo maps.

DreamPBR is trained on four Nvidia RTX 3090 GPUs. We
fine-tune m-LDM from stable-diffusion-v1-5. The PBR de-
coder produces albedo, normal, metallic, and roughness maps,
and a highlight-aware albedo decoder refines the albedo. Our
rendering-aware super-resolution module, adapted from Real-
ESRGAN, generates high-res SVBRDFs guided by rendering
loss. To improve image control, we train ControlNet on paired
data extracted by Pidinet for sketch guidance.

B. Generation Results

DreamPBR enables the generation of both realistic and
imaginative PBR materials from textual descriptions alone.
We leverage an LLM to create material descriptions for each
category, use them to sample a wide range of textures via
DreamPBR, and then refine these outputs with our super-
resolution module. Our experiments show that from the sam-



Fig. 4. Results of Shape Control. We use an LLM to describe segmented
3D shapes (e.g., chair legs and back) for texture generation via DreamPBR.
Alongside text-based descriptions (left), user-specific controls like RGB im-
ages (top right) and binary masks (bottom right) enable personalized designs.

pled set of 1000 textures, they align closely with their textual
descriptions, achieving a mean CLIP Score of 30.198.

Beyond basic text-driven synthesis, DreamPBR also sup-
ports pixel and style control to produce diverse materials
with specific visual guidance. As shown in Fig. 3, users
can guide generation through image references. Moreover,
users can combine style control and pixel control to fine-
tune appearances, enabling more freedom and accuracy in
producing the desired textures.

Moving further, DreamPBR extends beyond planar textures
to 3D objects by applying material generation to segmented
shapes such as chairs. By interacting with an LLM for region-
specific descriptions, or directly using cropped exemplars with
pixel and style controls, DreamPBR can produce detailed,
tileable textures that wrap naturally around object surfaces.
Fig. 4 demonstrates the versatility and adaptability of our
method in shape-aware scenarios.

Our approach effectively generates tileable textures (both
direct and guided) and their stitched outcomes, demonstrating
the effectiveness of our circular padding method. These results
maintain diversity and seamlessly tile across different scales,
allowing flexible application in various scenarios.

C. Comparative Experiments

O
ur

s
Ti

le
G

en
O

ur
s

Ti
le

G
en

Fig. 5. A qualitative comparison of pixel guidance between PixelControl
and TileGen [6] is presented for leather (top two rows) and tile (bottom
two rows) textures. TileGen frequently fails to align patterns, resulting in
artifacts in some renderings. In contrast, PixelControl consistently produces
more accurate and artifact-free results.

We compare PixelControl with TileGen [6] in a sketch-
guided generation. As shown in Fig. 5, using the same sketch,
DreamPBR produces fewer artifacts and provides more precise
control than TileGen. This highlights our method’s advantage
in sketches-driven generation and its ability to outperform
prior work in material synthesis.

Leveraging Stable Diffusion, DreamPBR demonstrates
strong competitiveness in material generation. DreamPBR’s
outputs for various materials indicate that it not only aligns
with real-world distribution like GAN-based methods but also
excels at generating imaginative “magic” textures.

D. Ablation Study

DreamPBR training incorporates multiple modules and ad-
ditional loss functions to enhance realism and minimize the
output search space. To assess the effectiveness of the previ-
ously mentioned rendering loss (Lrender), we trained two PBR
decoders—one with and one without the loss—and evaluated
them on 500 samples. As shown in Fig.6 and Table.I, the
rendering-aware decoder produces more realistic images with
consistent textures. Additionally, it achieves greater consis-
tency in rendering both images and SVBRDF components,
especially normal maps, and attains the lowest LPIPS and
RMSE scores. These results confirm that integrating rendering
feedback into the decoding process significantly improves
performance.

Render SVBRDF Render SVBRDF

R
ef

er
en

ce
w

/o
L

re
nd

er
O

ur
s

Fig. 6. Qualitative comparison on PBR decoder with rendering loss.

TABLE I
QUANTITATIVE RESULTS OF PBR DECODERS WITH RENDERING LOSS

Method LPIPS RMSE
Render Albedo Metallic Normal Roughness

w/o Lrender 0.107 0.0361 0.0126 0.0542 0.0406
Ours (w/ Lrender) 0.101 0.0357 0.0086 0.0531 0.0365

Due to space constraints, the ablation studies for the super-
resolution module, highlight-aware decoder, and Pixel Control
module are presented in the supplemental material.

V. CONCLUSIONS

In this paper, we present DreamPBR, a diffusion-based
generative framework for creating high-resolution, physically
based material textures. DreamPBR offers flexibility and



controllability by allowing users to generate detailed and
semantically accurate materials through text descriptions and
various multimodal inputs, including images and geometries. It
supports diverse material styles, ensuring high-quality, tileable
textures for various applications. By integrating multiple guid-
ance types, DreamPBR enables personalized and intuitive
creation, effectively bridging creative text generation with
realistic, physically based materials.
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[2] Yu Guo, Cameron Smith, Miloš Hašan, Kalyan Sunkavalli, and Shuang
Zhao, “Materialgan: Reflectance capture using a generative svbrdf
model,” ACM Trans. Graph., vol. 39, no. 6, nov 2020.

[3] Yiwei Hu, Julie Dorsey, and Holly Rushmeier, “A novel framework for
inverse procedural texture modeling,” ACM Trans. Graph., vol. 38, no.
6, nov 2019.

[4] Valentin Deschaintre, Miika Aittala, Fredo Durand, George Drettakis,
and Adrien Bousseau, “Single-image svbrdf capture with a rendering-
aware deep network,” ACM Transactions on Graphics (ToG), vol. 37,
no. 4, pp. 1–15, 2018.

[5] Jie Guo, Shuichang Lai, Qinghao Tu, Chengzhi Tao, Changqing Zou,
and Yanwen Guo, “Ultra-high resolution svbrdf recovery from a single
image,” ACM Trans. Graph., vol. 42, no. 3, jun 2023.

[6] Xilong Zhou, Milos Hasan, Valentin Deschaintre, Paul Guerrero, Kalyan
Sunkavalli, and Nima Khademi Kalantari, “Tilegen: Tileable, con-
trollable material generation and capture,” in SIGGRAPH Asia 2022
conference papers, 2022, pp. 1–9.

[7] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio,
“Generative adversarial networks,” Communications of the ACM, vol.
63, no. 11, pp. 139–144, 2020.

[8] Ben Poole, Ajay Jain, Jonathan T. Barron, and Ben Mildenhall, “Dream-
fusion: Text-to-3d using 2d diffusion,” arXiv, 2022.

[9] Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan Li, Hang
Su, and Jun Zhu, “Prolificdreamer: High-fidelity and diverse text-
to-3d generation with variational score distillation,” arXiv preprint
arXiv:2305.16213, 2023.

[10] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser,
and Björn Ommer, “High-resolution image synthesis with latent diffu-
sion models,” 2022.

[11] Xiao Li, Yue Dong, Pieter Peers, and Xin Tong, “Modeling surface ap-
pearance from a single photograph using self-augmented convolutional
neural networks,” ACM Transactions on Graphics (ToG), vol. 36, no. 4,
pp. 1–11, 2017.

[12] Zhengqin Li, Kalyan Sunkavalli, and Manmohan Chandraker, “Materials
for masses: Svbrdf acquisition with a single mobile phone image,” in
Computer Vision – ECCV 2018: 15th European Conference, Munich,
Germany, September 8–14, 2018, Proceedings, Part III, Berlin, Heidel-
berg, 2018, p. 74–90, Springer-Verlag.

[13] Jie Guo, Shuichang Lai, Chengzhi Tao, Yuelong Cai, Lei Wang, Yanwen
Guo, and Ling-Qi Yan, “Highlight-aware two-stream network for single-
image svbrdf acquisition,” ACM Trans. Graph., vol. 40, no. 4, jul 2021.

[14] Philipp Henzler, Valentin Deschaintre, Niloy J. Mitra, and Tobias
Ritschel, “Generative modelling of brdf textures from flash images,”
ACM Trans. Graph., vol. 40, no. 6, dec 2021.

[15] Valentin Deschaintre, Miika Aittala, Fr’edo Durand, George Drettakis,
and Adrien Bousseau, “Flexible svbrdf capture with a multi-image deep
network,” Computer Graphics Forum (Proceedings of the Eurographics
Symposium on Rendering), vol. 38, no. 4, July 2019.

[16] Liang Shi, Beichen Li, Miloš Hašan, Kalyan Sunkavalli, Tamy
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Pietikäinen, and Li Liu, “Pixel difference networks for efficient edge
detection,” in Proceedings of the IEEE/CVF international conference
on computer vision, 2021, pp. 5117–5127.

[33] Hu Ye, Jun Zhang, Sibo Liu, Xiao Han, and Wei Yang, “Ip-adapter: Text
compatible image prompt adapter for text-to-image diffusion models,”
arXiv preprint arXiv:2308.06721, 2023.

[34] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge
Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt,
Sam Altman, Shyamal Anadkat, et al., “Gpt-4 technical report,” arXiv
preprint arXiv:2303.08774, 2023.

[35] Ruizhen Hu, Xiangyu Su, Xiangkai Chen, Oliver van Kaick, and Hui
Huang, “Photo-to-shape material transfer for diverse structures,” ACM
Transactions on Graphics (Proceedings of SIGGRAPH), vol. 39, no. 6,
pp. 113:1–113:14, 2022.

[36] Samuli Laine, Janne Hellsten, Tero Karras, Yeongho Seol, Jaakko
Lehtinen, and Timo Aila, “Modular primitives for high-performance
differentiable rendering,” ACM Transactions on Graphics, vol. 39, no.
6, 2020.


