
Supplemental Material for DreamPBR: Text-driven
High-Resolution SVBRDF Generation with

Multimodal Guidance

In the supplemental material, we provide additional experi-
mental details as well as results from generation experiments,
comparison experiments, and ablation studies, showcasing the
powerful capabilities of DreamPBR in the field of creative
material generation.

I. IMPLEMENTATION DETAILS

DreamPBR is trained on quadruple Nvidia RTX 3090 GPUs.
During the training of material LDM (m-LDM), we employ
Adam as our optimizer with a base learning rate of 1.6×10−3

and closed learning rate scaling. Starting with the stable-
diffusion-v1-5 checkpoint [1] for 9000 epochs, we finetune
it for approximately 10 days. For the training of the PBR
decoder, we set the base learning rate to 4.5×10−6 and enabled
scale lr, taking 4 days total in which the output channels
of the decoder are set to 8, with albedo and normal having
three channels each, and metallic and roughness being single-
channel. For the highlight-aware albedo decoder, we set the
base learning rate to 4.5× 10−6 and enabled scale lr, taking
2 days total in which the output channels of the decoder were
set to 3. We incorporate rendering loss during the training
process.

During the training of the rendering-aware super-resolution
module, we initially utilized the preset weights from Real-
ESRGAN [2] and finetuned four super-resolution modules
specifically for albedo, normal, metallic, and roughness tex-
tures. These modules are finetuned using the learning rates of
1× 10−4 and 10000 total iter. Furthermore, we combined the
training of all four modules in a model to render the result of
each module during training and incorporated rendering loss.

For Pixel Control, we set the learning rate to 1× 10−5 for
training ControlNet [3], which requires about 2 days to com-
plete. For Style Control, we directly utilize the ip-adapter sd15
checkpoint [4] along with our finetuned checkpoint, as we have
observed satisfactory results.

II. GENERATION RESULTS

We categorize our dataset into ten types manually: Brick
(58), Fabric (60), Ground (99), Leather (45), Metal (130),
Organic (45), Plastic (40), Tile (75), Wall (69), and Wood
(90). we obtain a mount of descriptions of materials in
by LLM for each type, which is used to sample materials
with DreamPBR. The generated textures are enhanced by the
super-resolution module and rendered as shown in Fig. 2.

Besides the consistency of text and images, the diversity

a PBR material of wood

a PBR material of tile, encaustic cement tiles, indoor, floor

Fig. 1. Diverse sampling results under the same prompts. We evaluate
the diversity with the same basic description (top) and the same detailed
description (bottom) but different random seeds. Both of them show quite
different patterns and textures although the same prompt is used.

of results is quite important for text-driven generative models
as well. As demonstrated in Fig. 1, we further sample several
textures with the same prompt but different random seeds,
DreamPBR succeeds in producing diverse textures that follow
the descriptions we specify.

Although the users would introduce various controls, we can
generate seamless tileable textures all the time, which allows
users to apply the generated textures in different scales and
different scenes. In Fig. 3, we present several tileable textures
from direct and guided generation with their splicing results,
showing the effectiveness of circular padding in our method.
With additional control of binary images, inpainting is also

a usual method for users to obtain specified results so we
present several inpainting results in Fig. 4 to replace a region
in texture with another region users describe.

Fig. 5 illustrates the situation in that users would like to
combine Style Control with Pixel Control, which enables users
to generate the results they want more freely.



Type Render SVBRDF Render SVBRDF Render SVBRDF Render SVBRDF Render SVBRDF
B

ri
ck

snow-covered bricks, winter,
outdoor, house

coastal barrier bricks, sea-salt
resistant, outdoor, barrier

stenciled brick floor, paving,
terracotta, scratched narrow bricks, walls blackened fireplace bricks,

charred

Fa
br

ic

tablecloth, delicate denim jacket texture, clothing hand woven carpet, artisan,
carpet floral cotton dress, clothing backpack fabric, sturdy

G
ro

un
d

ice glazed slippery, outdoor,
winter

aerial mud, road, tracks dry rocky ground marble floor, polished, indoor stone ground

L
ea

th
er

perforated leather, breathable black leather decoration, indoor leather white, smooth reptile skin leather, textured

M
et

al

space cruiser panels, scifi wrought iron gate, ornate,
outdoor

golden metal wall, old anodized metal surface,
industrial

nickel plated hardware,
smooth

O
rg

an
ic

alien slime forest leaves, natural, autumn,
dirt

dragon scales stylized animal fur honeycomb structure,
geometric, natural, beehive

Pl
as

tic

plastic pattern, synthetic yoga mat synthetic plastic, rough reflective safety vest, clothing childrens playground slide,
colorful

Ti
le

elegant, interior decoration art deco style tiles, vintage,
indoor, decorative

vintage ceiling tiles, indoor patterned bw vinyl, floors encaustic cement tiles,
colorful, indoor, floor

W
al

l

dry stone wall, natural,
outdoor

street art graffiti, colorful,
urban

victorian wallpaper, patterned,
indoor, historic

stucco finish, mediterranean cliff, outdoor

W
oo

d

blue, worn painted wood
siding, walls

parquet wood flooring,
geometric charcoal varnished walnut, glossy,

indoor
bamboo wall covering,

eco-friendly

Fig. 2. The generation results of DreamPBR under text-only conditions: We randomly sampled numerous materials with various types and wide tags, by the
prompts, “a PBR material of [type], [tags]”. Not only can DreamPBR generate materials that match the descriptions, but also some out-of-domain materials
are created as well such as brick of snow-covered bricks, plastic of a children’s playground slide, and wall of street art graffiti.



Output Expansion Output Expansion

Fig. 3. Splicing results of our tileable textures. The first 3 rows show the
tileable results generated under only text descriptions and the last row shows
the results with Pixel Control and Style Control, whose control conditions are
attached to the edge of images. All the textures we generated in this figure
show high tile abilities without artifacts.

Input Yellow flower Red flower

Blue flower Cyan flower Purple flower

Pink flower Leaf Grass

Fig. 4. Inpainting results. The original texture is shown in the upper left
corner, which is generated by the prompt “a PBR material of the fabric,
floral cotton fabric”. By different tags (above each image) and regions to be
inpainted (bright areas in each image), we can manipulate user-specified areas
in the textures according to preferences such as changing a leaf to colorful
flowers.

Prompt Style Pixel Render SVBRDF

a PBR material
of tiles, marble

a PBR material
of wood, indoor

a PBR material
of tiles, art

deco style tiles,
vintage, indoor,

decorative

a PBR material
of fabric, hand
woven carpet,

cute bunny,
artisan, indoor

Fig. 5. Results of combined control. We combine descriptions of materials
(the first column), styled images (the second column), and binary images
(the third column) to control the generated textures. Under the descriptions
of materials, the generated results have both the given pattern and style
incorporated into them.

MaterialGAN TileGen Ours

St
on

e
M

et
al

Fig. 6. Qualitative comparison on texture generation. We randomly sample
several materials of stone and metal by MarerialGAN and TileGen, which are
used to be compared with ours. Importantly, we can generate out-of-domain
textures as shown in the fourth row and the last row of ours, which is beyond
the capabilities of GAN-based methods.



III. COMPARATIVE EXPERIMENTS

Leveraging the powerful generative model, StableDiffusion,
DreamPBR proves previous methods for materials generation.
We compare the results generated from DreamPBR for dif-
ferent materials against MaterialGAN [5] and TileGen [6] in
Fig. 6. Notably, there are only two categories provided in the
competing methods so our results are generated by giving
prompts, “a PBR material of ground, stone” and “a PBR
material of metal”. The comparison shows that DreamPBR
can generate textures following the distribution of realistic
data from datasets like GAN-based methods as well as magic
textures from prior information for 2D images.

IV. ABLATION STUDY

Reference

Reference Low Res. Pretrained w/o Lrender Ours(w/ Lrender)

Fig. 7. Qualitative comparisons on the Super-Resolution module are shown,
including results with high-resolution textures (2048× 2048), low-resolution
textures (512× 512), and textures from three training strategies: pre-trained,
fine-tuned without Lrender, and fine-tuned with Lrender (ours). Our method
achieves textures and details more consistent with ground truth, as demon-
strated in the bottom five images of the figure.

TABLE I
COMPARISONS ON THE SUPER-RESOLUTION MODULE

Method LPIPS RMSE
Render Albedo Metal. Normal Rough.

Pretrained 0.450 0.0272 0.0816 0.0598 0.0588
w/o Lrender 0.342 0.0248 0.0652 0.0474 0.0451

Ours (w/ Lrender) 0.321 0.0211 0.0643 0.0398 0.0445

TABLE II
COMPARISONS ON THE HIGHLIGHT-AWARE MODULE (HA)

Method Highlight Inputs Non-Highlight Inputs
L1 PSNR LPIPS L1 PSNR LPIPS

w/o HA 0.0409 25.7460 0.1928 0.0201 33.2621 0.1220
w/ HA 0.0211 32.6578 0.1452 0.0202 33.2904 0.1241

w/o HA w/ HA w/o HA w/ HA w/o HA w/ HA

Input w/o HA w/ HA Input w/o HA w/ HA

Input Refer. w/o HA w/ HA Input Refer. w/o HA w/ HA

Fig. 8. Qualitative comparisons on the highlight-aware module (HA) show its
ability to remove highlights from albedo maps generated by the VAE decoder,
improving generation results. For inputs without highlights, the module has
minimal impact, while for inputs with highlights, it effectively de-highlights
them.

w
/o

ft
O

ur
s

Fig. 9. Qualitative comparison on fine-tuning ControlNet. We evaluate the pre-
trained ControlNet and our fine-tuned version based on the pre-trained one to
employ pixel-guidance generation. The textures from pre-trained ControlNet
(w/o ft) are more like natural images rather than textures.

Although the super-resolution models originally show great
results in natural images, we finetune it again with our material
data and employ a novel rendering loss Lrender from the level of
perception. In practice, we finetune super-resolution modules
for each component of textures based on the pre-trained Real-
ESRGAN as our baseline. With four single modules(albedo,
metallic, normal, and roughness), we jointly finetune them and
introduce the Lrender by rendering four textures after super-
resolution to image space. The comparison results are shown
in Fig. 7. Table. I shows that our final model, fine-tuned with
Lrender, achieves the lowest LPIPS for rendered images and the
lowest RMSE for SVBRDF maps compared to ground truth.
Similar to the training of PBR Decoder, the finetuning super-
resolution modules with Lrender contributes to better results.

We introduce a highlight-aware albedo decoder to remove
the potential highlights in generated RGB images. For a good
de-highlight module, there are two key points to be taken into
account: (1) effectively removing the highlights in images,
and (2) leaving them unchanged for those without highlights.
In practice, only training on rendered images potentially
affects the decoded albedo(without highlights), so we finetune
the highlight-aware decoder by randomly choosing rendered
images from different lights or pure albedo maps. Furthermore,



we compare the outputs of the highlight-aware decoder with
those of the initially pre-trained decoder in Fig. 8, suggesting
that our decoder addresses the issues of two key points above.
Table. II confirms this conclusion by comparing L1, PSNR,
and LPIPS between real albedo maps and de-highlighted
albedo maps.

To realize sketch-guidance control, we embed a pre-trained
ControlNet in DreamPBR. However, different from the IP-
Adapter for Style Control focuses on incorporating semantics
of images in clip space independent of training data, the initial
ControlNet leads to domain shift, from the albedo domain
back to the image domain, in our experiments. To address this
problem, we finetune the ControlNet with our sketch-albedo
pairs as mentioned above. The comparison of ControlNet
before and after being finetuned is shown in Fig. 9.

REFERENCES

[1] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and
Björn Ommer, “High-resolution image synthesis with latent diffusion
models,” 2022.

[2] Xintao Wang, Liangbin Xie, Chao Dong, and Ying Shan, “Real-esrgan:
Training real-world blind super-resolution with pure synthetic data,” in
Proceedings of the IEEE/CVF international conference on computer
vision, 2021, pp. 1905–1914.

[3] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala, “Adding conditional
control to text-to-image diffusion models,” 2023.

[4] Hu Ye, Jun Zhang, Sibo Liu, Xiao Han, and Wei Yang, “Ip-adapter: Text
compatible image prompt adapter for text-to-image diffusion models,”
arXiv preprint arXiv:2308.06721, 2023.

[5] Yu Guo, Cameron Smith, Miloš Hašan, Kalyan Sunkavalli, and Shuang
Zhao, “Materialgan: Reflectance capture using a generative svbrdf
model,” ACM Trans. Graph., vol. 39, no. 6, nov 2020.

[6] Xilong Zhou, Milos Hasan, Valentin Deschaintre, Paul Guerrero, Kalyan
Sunkavalli, and Nima Khademi Kalantari, “Tilegen: Tileable, controllable
material generation and capture,” in SIGGRAPH Asia 2022 conference
papers, 2022, pp. 1–9.


