

Deep Inverse Rendering for High-resolution SVBRDF Estimation from an Arbitrary Number of Images

Duan Gao ^{1,3}, Xiao Li ^{2,3}, Yue Dong ³, Pieter Peers ⁴, Kun Xu ¹, Xin Tong ³

¹ Tsinghua University
² University of Science and Technology of China
³ Microsoft Research Asia
⁴ College of William & Mary

RENDERING

MATERIAL APPEARANCE

Geometry

APPEARANCE ESTIMATION

OUR GOAL

Unified framework

RELATED WORK

[Deschaintre et al. 2018]

Learning-based methods

- Single input image
- Plausible –

RELATED WORK

[Aittala et al. 2015]

[Dong et al. 2014]

Classic Inverse Rendering

- Many input images (or strong assumptions)
- Accurate

RELATED WORK

		SIGGRAPH201 VAN(OUVER
[Deschaintre et al. 2018]	[Aittala et al. 2015]	[Dong et al. 2014]
single	few	many
NUM	ber of input images	
rning-based methods	Classic Inverse Rendering	

- Single input image
- Plausible

- Many input images • (or strong assumptions)
- Accurate

OUR CONTRIBUTION

Single

Plausible

Key Idea: Deep Inverse Rendering

SVBRDF auto-encoder SVBRDFs

Multiple measurements

Key Idea: Deep Inverse Rendering

Key Idea: Deep Inverse Rendering

• Optimize in learned latent space

Key Idea: Deep Inverse Rendering

• Optimize in learned latent space

KEY CHALLENGES

SVBRDF auto-encoder SVBRDFs

Multiple measurements

KEY CHALLENGES

- How to set correct error metric to preserve quality coherence of different maps?
- How to construct a smooth space suitable for optimization?
- How to get a good initialization?

KEY CHALLENGES

• Training Loss

• Smoothness regularization

 E
 J
 D
 Image: Constrained on the second on the second

Initialization strategy

ASSUMPTIONS

- Planar object
- Point light source collocated with the camera
- Fix distance between object plane and camera

SVBRDF AUTO-ENCODER

Training Loss:

E

 \mathbf{Z}

$$\mathcal{L}_{train} = \mathcal{L}_{map} + \lambda_{render} \mathcal{L}_{render}$$

Training Loss:

$$\mathcal{L}_{train} = \mathcal{L}_{map} + \lambda_{render} \mathcal{L}_{render}$$

Latent space smoothness:

$$\mathcal{L}_{smooth} = \lambda_{smooth} ||D(z) - D(z + \xi)||_1$$

BOOTSTRAP THE OPTIMIZATION

State-of-the art single input network [Deschaintre et al. 2018]

BOOTSTRAP THE OPTIMIZATION

State-of-the art single input network [Deschaintre et al. 2018]

Or any other stateof-the art methods!

OPTIMIZE IN LATENT SPACE

DETAIL REFINEMENT

IMPROVED QUALITY WITH SINGLE INPUT

COMPARISON WITH CLASSIC INVERSE RENDERING

Classic inverse rendering

ours

COMPARISON WITH CLASSIC INVERSE RENDERING

Classic inverse rendering ours Reference Render image error 0.05 · 0.04 **Classic** inverse 0.03 rendering 0.02 0.01 0.00 Number of inputs Ours 10 20

HIGH RESOLUTION RESULTS

Support arbitrary resolution!

Estimated SVBRDF with 20 input photos

Novel view rendering ³³

HIGH RESOLUTION RESULTS

Support arbitrary resolution!

Estimated SVBRDF h 20 input photos

Novel view rendering ³⁴

HIGH RESOLUTION RESULTS

Support arbitrary resolution!

Estimated SVBRDF with 20 input photos

Novel view rendering ³⁵

REAL CAPTURED RESULTS

Leather, 1k resolution, 5 input images

Novel view

REAL CAPTURED RESULTS

Card, 1k resolution, 20 input images

Novel view

CONCLUSION & FUTURE WORK

- A unified deep inverse rendering framework
 - Performs optimization in SVBRDF latent space
 - Handles arbitrary number of inputs
- Future Work
 - Leverage better initialization strategy
 - Geometry + appearance estimation

CONCLUSION & FUTURE WORK

- A unified deep inverse rendering framework
 - Performs optimization in SVBRDF latent space
 - Handles arbitrary number of inputs
- Future Work
 - Leverage better initialization strategy
 - Geometry + appearance estimation

ACKNOWLEDGEMENTS

- Anonymous Reviewers
- Deep Materials dataset and model [Deschaintre et al. 2018]
- NSF grant IIS 1350323
- National Natural Science Foundation of China

Thanks