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Abstract—Recent advancements in 3D face generation have
explored various representation and generative models. However,
these methods often offer limited 3D face editing capabilities. In
this paper, we introduce UniFaceGAN, a novel framework for 3D
facial editing, leveraging a unified latent space to facilitate diverse
and user-friendly 3D facial manipulation. The key to efficient 3D
facial editing lies in establishing a representation space that offers
essential facial priors. To achieve this, we propose encoding high-
dimensional 3D faces into a compact, disentangled latent space
which is learned through conditional 3D GANs guided by text
descriptions. With the help of the GAN inversion techniques,
UniFaceGAN allows us to edit existing 3D faces, accompanied by
a residual editing strategy to mitigate inversion errors efficiently.
We demonstrate UniFaceGAN can generate high-quality 3D faces
and supports various 3D face editing applications, including
CLIP-based stylizations, multiple-point-based drag manipulation,
and local blending among multiple faces.

Index Terms—3D Digital Avatar, Multimodal Deep Generative
Model, 3D Face Editing

I. INTRODUCTION

Creating high-quality, customized digital face models is
a challenging research problem in computer graphics and
computer vision. While early methods [1]–[4] can generate
remarkable digital humans, they often require specialized
hardware and extensive manual post-processing by skilled
artists. Parametric facial models [5]–[7] enabled lightweight
face reconstruction from a few photographs. However, these
methods cannot produce high-frequency details due to their
linear nature. Recent advances in 2D image generation [8]–
[12] enable highly various and high-quality 3D face generation
and applications [13], [14]. Moreover, implicit 3D represen-
tation such as the Neural Radiance Fileds(NeRF) [15] and
3D Gaussian Splatting [16] are introduced to generative mod-
els, that enhance 3D avatars generation [17]–[23]. However,
implicit representation-based generative models had limita-
tions in relighting and appearance editing since the surface
reflectance properties and illumination are not disentangled.
Furthermore, implicit representation is not fully compatible
with the current Computer Graphics (CG) pipeline.

For explicit 3D faces, the main challenges are from limited
3D facial data. Existing diffusion-based methods [24], [25]
leverage the face priors from pre-trained diffusion models to

∗Corresponding authors.
This research was funded by Hainan Development Project of Science and
Technology (ZDYF2022SHFZ323); National Natural Science Foundation of
China (NSFC) (62275141); Shenzhen’s S&T Project for Sustainable Devel-
opment (KCXST20221021111405013).

(a) (b) (c) 

New mouthClosing an eyeOriginal face

PBR textures Draging the cheek New nose

Barbie makeup

White Walker Zombie

Gothic makeup

Fig. 1. Editing operations of UniFaceGAN. We can drag points on his face
(a), replace his facial organs with another one (b), and put fancy makeups on
his face by simple descriptions (c).

generate diverse 3D faces, while producing face geometry by
selection or reconstruction under the constrain of parametric
facial models, which restricts their freedom to edit geometry.
Moreover, SDS-based texture optimization is time-consuming
along with multiple denoising processes. Besides, there are
several 3D GAN-based generative model trained on a certain
dataset [26]–[30] for fast generation. However, constrained by
the dataset, they usually suffer from limited diversity.

To address these limitations in 3D face editing, we introduce
UniFaceGAN, a novel framework designed for efficient 3D
face editing with a wide range of controls including stylization,
point-based drag manipulation, and local blending among
multiple assets. Our key idea is to encode high-dimensional
face data into a unified latent space, from which various 3D
face editing operators can be performed. The main motivation
is to establish a GAN space with a high degree of freedom
for face editing, distinct from the commonly employed raw
3D space or parametric space. Besides, the CLIP space in
pre-trained CLIP [31] shows sufficient 2D face priors, which
can be joined with our GAN space to enhance texture editing
without needing a large amount of 3D face.

We introduce the following strategies to overcome the
challenges in constructing a unified latent space suitable for 3D
facial generation and editing: 1) Efficient facial representation:
We utilize a neural network-friendly 3D facial representation
that efficiently handles the inherent complexity of 3D represen-
tation, characterized by high dimensionality and irregularities.
2) Optimization strategies joint with raw 3D space and CLIP
space: the raw 3D space allows directly manipulation, which



can be used to modify face geometries; the CLIP space can
extend optimization space with CLIP prior, achieving the
synchronously editing of physically-based rendering (PBR)
appearances. 3) Residue-based editing strategy: With the GAN
inversion technique, we can editing arbitrary 3D faces in the
latent space, and minimize the embedding errors by incorpo-
rating a residue-based editing strategy.

UniFaceGAN is capable of generating high-quality facial
models within 60 milliseconds and supports various 3D face
editing applications as shown in Figure 1, for both geometries
and PBR textures. In summary, our main contributions are:
1) A 3D face generation framework, which bridges a unified
latent space for geometry and PBR materials of faces, enabling
high-quality 3D face generation and editing; 2) A stylization
method to synchronously manipulate PBR appearances with
only a simple text description; 3) A novel way to manipulate
face geometries with priors of GANs, which preserves better
facial consistency than previous methods.

II. METHOD

A. Neural-network-friendly 3D facial representation

We present 3D faces, using parameter maps in the UV
texture space defined by the fixed-topology geometry. More
specifically, for each point x on the face surface, we charac-
terize its facial representation by a surface position p(x), and
physically-based material parameters kd(x), ks(x), n(x), r(x).
Texture-space parameter maps are a natural 2D representation,
which is highly compatible with convolutional-based neural
networks. A position map p(x) acts similarly to other texture
maps but instead stores the 3D position coordinates (x, y, z).
This texture-space representation is equivalent to the fixed-
topology mesh, meaning that they can be converted back and
forth losslessly with sufficient texture resolution.

B. Unified Generator

As shown in Figure 2, our unified generator consists of a
unified projector and a multi-branch generator. The unified
projector and multi-branch generator work collaboratively.
Specifically, the latent code for each generator is generated
by a unified projector P , four two-layer MLPs:

P(w) : R|w| → R|wp|×|wkd
|×|wn|×|ws|, (1)

where w is the unified latent code, wp, wkd
, wn, and ws cor-

respond to the position, diffuse, normal, and specular(specular
albedo and specular roughness) latent code, respectively. The
multi-branch generator consists of four individual generators to
reconstruct our 3D facial representation from the latent space:

G = {Gp(wp),Gkd
(wkd

),Gn(wn),Gs(ws)}, (2)

where Gp,Gkd
,Gn generate 3-channel position map, diffuse

albedo, and normal map respectively, Gs(ws) produces a 2-
channel specular map (specular albedo and roughness).

We opt for a multi-branch generator architecture instead of
directly using a monolithic generator to generate 11-channel
textures. This choice is motivated by two key considera-
tions. Firstly, while there are correlations between different

properties, the details tend to vary significantly. The mis-
alignment between different properties can affect both the
training stability. Secondly, training a large monolithic network
requires much larger memory requirements and computational
resources. In contrast, our multi-branch generators can be
trained separately and subsequently fine-tuned for a few it-
erations, resulting in more efficient resource utilization.

C. Residual Editing

In a typical editing scenario, given an initial 3D face F0,
we first employ the inversion algorithm to find its latent
representation w0 and the corresponding inverted 3D face
F∗

0 = G(w0). Next, certain latent manipulation function M
is applied to modify the latent code, resulting in the edited
latent code w1 = M(w0). Finally, the final edited 3D face
is generated using the generator F∗

1 = G(M(w0)). The
differences F∗

1 −F0 between the input 3D face and the edited
result contains two terms: the first term is the actual editing
∆ = F∗

1 −F∗
0 that we intend to achieve and the second term

is the inversion errors δ = F∗
0 −F0 that we aim to eliminate.

Although the inversion error is relatively small, it mainly
contains high-frequency details that are crucial for capturing
unique characteristics, and thus cannot be ignored.

We introduce a residual-based strategy to mitigate the inver-
sion errors during editing by simply subtracting the inversion
error from the edited mesh. Specifically, we compute the final
edited mesh as follows:

F1 = F∗
1 − δ = F0 + G(M(w0))− G(w0). (3)

D. Latent Manipulation

1) CLIP-based Stylization: With the pre-trained CLIP
model, we can expand the capability to edit different tex-
tures by its priors of images and texts, enhancing diverse
stylizations. To do so, we adopt the directional CLIP loss
[32] operation in CLIP space and introduce a rendering
process like ClipFace [13], while we allow changing PBR
appearances not just on a single texture. Specifically, a frozen
generator Gfrozen is to generate original faces, and different
branches in another trainable generator Gtrain are optimized
to minimize the directional CLIP loss (Equation (4)) under
random positions of the camera and convert the original face
to the texttgt style. We found that the geometry is unstable
when optimizing, so we keep Gp frozen in stylization.

∆T = ET (textinit)− ET (texttgt),

∆I = EI(R(Gfrozen(w), p))− EI(R(Gtrain(w), p)),

Lclip = Ep,w(1−
∆T∆I

|∆T ||∆I| ),
(4)

where p is the camera position, R is the rendering process,
and textinit is set as “a face”.

2) Geometry manipulation: Initially, a GAN model is
trained with high-quality and artifact-free data, establishing a
relationship between latent codes and faces. Within a certain
latent space range, any latent code will produce a reasonable
and artifact-free face. Based on this observation, we convert
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Fig. 2. Architecture of Unified Generator (Section II-B) and Training Pipeline (Section II-E).

a coarse edited face geometry F coarse
p with only the dragged

points moved, to an artifact-free face by optimizing wp by

L = ∥W ⊙ (Gp(wp)−F coarse
p )∥, (5)

where W satisfies: high weight on dragged points, zero weight
around dragged points for adaptive change, and one weight on
other regions for keeping identity.

We can also locally replace some regions of faces. Different
from dragging, when replacing the region M in source face
F src

p by target face F tgt
p , we cannot blend those two faces

directly because of difference of heights. Thus, we introduce
a slack displacement vector ϵoffset ∈ R3 to adaptively fix the
difference of heights and we can change the loss function as:

L = ∥Gp(wp)− (1−M)F src
p +M(F tgt

p + ϵoffset)∥. (6)

E. Training
1) Discriminators: In our implementation, for the diffuse

discriminator Dkd
and position discriminator Dp, we adopt the

architecture of ShiftViT [33]. We found that the ShiftViT dis-
criminator more accurately captures the facial features of the
diffuse albedo and position map compared to the StyleGAN’s
discriminator as shown in Table I.

2) Training Loss: The training loss of our conditional
generative model consists of four terms:

L = LG + LD + λregLreg + Lsym, (7)

where LG is the conditional GAN loss for the generator, LD
is the conditional GAN loss for the discriminator, Lreg is the
regularization term used in the training of StyleGAN including
r1 regularization, and Lsym is the symmetry regularization
term.

We have observed that the position map is more sensitive
to small numerical variations. This means that even a small
difference can lead to visually noticeable artifacts in the
reconstructed mesh. To ensure smooth facial geometry, we
introduce an additional symmetry regularization term Lsym,
aiming to minimize the error between symmetrical texels in
the position map that lie on each side of vertical midlines.

Lsym =
∑
i,j

(|a0,i,jpos + a0,i,jflip |+
∑

1≤c≤2

|ac,i,jpos − ac,i,jflip |) (8)

where apos is the position map (symmetrical to the Y-O-Z
plane) and aflip is the horizontally fliped position map.

3) Pipeline: We propose a multi-stage training scheme to
accelerate the training process: (1) Train each generator and
its corresponding discriminator separately at a resolution of
512× 512 as warmup and then fine-tune 1, 024 models using
1k resolution data. (2) Integrate independent generators for
different facial properties into a unified generative model by
training the unified projector while keeping other modules
frozen. (3) Unlock the mapping MLP, allowing for adaptive
improvements to the distribution of the unified latent space.
(4) Unlock all trainable weights in the final fine-tuned stage
to achieve a more unified and consistent generative model.

III. EXPERIMENT

A. Dataset

We collect the face assets of 126 identities from [34], with
labels of races, genders, and ages, and manually label them
with extra labels like face shape, nose shape, and mouth shape.
To improve the diversity of geometry, we construct a facial
geometry dataset derived from the CelebA-HQ dataset with a
single-image 3D face reconstruction technique and group them
with the textures by the above labels.

B. Implementation Details

Our structure of generators follows StyleGAN2 [35] and
CLIP is ViT-B/32. We use Adam as our optimizer, batch size
32, and learning rates of 3e-4 and 5e-4 for generators and
discriminators using four Nvidia 3090 GPUs. Firstly we train
each submodel for 512 × 512 images in 4 million iterations
until they converge and finetune them in 1024×1024 images in
2 million iterations. The three stages of finally unified training
are 50, 150, and 650 iterations.

Original Face w/o. residue w. residue

Fig. 3. Comparison of residual editing.
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Fig. 4. Comparison of Symmetry Loss.

Fig. 5. Comparison of different architecture.

C. Ablation Study

1) Residual Editing: To evaluate the effectiveness of resid-
ual editing, we apply a drag operation on the nose and compare
the maintenance of unedited areas in the faces. The normalized
logarithm of L1 error maps are shown in Figure 3. It is
clear that the edited face with the residual editing method
maintains more details in the unedited area while allowing
partial changes for the adaptation edition.

2) Symmetry Loss: We trained our generator of shapes with
and without symmetry loss respectively and compared the
faces from those two generators. Figure 4 shows the different
results of generated faces based on the use of symmetry loss.
It is clear that the symmetry loss benefits neater geometries.

3) Multi-Branch Architecture: Compared with our multi-
branch architecture, we double the base channels of the
generator and discriminator of StyleGAN so that its parameters
are almost the same as our model. As shown in Figure 5, the
textures from single-branch architecture have similar structures
but deviate from the original distributions. With separate
architecture, different properties fit each distribution well.

Fig. 6. Comparison of geometry manipulation.
4) ShifitViT-Based Discriminator: Table I digitally shows

the effect of different discriminator settings for submodels’
training. By using ShiftViT, it keeps lower FIDs for generating

TABLE I
THE COMPARISON OF SHIFTVIT-BASED DISCRIMINATOR

Discriminator setting FID↓
Diffuse Normal Mesh

w/o. ShiftViT 74.13743 29.59193 11.26426
w. ShiftViT 36.00264 44.23839 3.970599

diffuse maps and meshes but a higher FID for normal maps.
So we introduce ShiftViT in the discriminator of diffuse and
mesh while keeping the original discriminator in other assets.

D. Comparison

1) Geometry manipulation: We try different methods to
manipulate the geometries in Figure 6. ARAP [36] is one of
the most usual methods to drag geometries, while it works
as a general method without priors of faces. Using the same
optimization target, we can also optimize 3DMM coefficients
instead of GAN’s latent code. However, the linearity makes
it hard to keep identities. In comparison, the GAN space has
better properties for the geometry manipulation task.

Fig. 7. Comparison of textures stylization.

2) Texture stylization: We compared our stylization method
with ChatAvatar [37] and ClipFace [13] in Figure 7. To
create wrinkles, we can only optimize the submodel of the
normal map, which keeps more on identities. Because of our
decoupling of PBR appearances, we can transform a face into
another material(stone and metal) more easily. The target style
texts are “a face with many wrinkles”, “a face made of stone”,
“a tin man”, and “a face that looks like the Joker”, respectively.

IV. CONCLUSIONS

UniFaceGAN builds a latent space of StyleGAN for high-
quality textures and geometries, succeeding in editing high-
quality 3D faces. In summary, our proposed approach ad-
dresses the challenges in constructing a unified latent space
for 3D facial generation and editing through a multifaceted
strategy. Furthermore, residual editing allows us to manipulate
in-the-wild faces based on the inversion technique. Collec-
tively, these strategies contribute to an advanced and efficient
framework for 3D facial generation and editing, with improved
interpretability and fine-grained control.
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